[建模方法]采用元件创建复杂模型

说明:本文件介绍 EastWave "元件"的基本概念,及其基础使用方法 建议参考:帮助手册 - 6.1.19 物体操作 - 2)元件、物体重用和独特功能 适用于:所有版本 另注:附带脚本文件请向技术支持工程师索要

在 V5.0 版本中,我们直接创建物体,并对物体绑定材料来进行建模。

而实际上,每个物体由形状和材料这完全独立的两部分构成。物体形状,在 EastWave 中, 被叫做"元件"。

下面,我们将介绍采用元件创建复杂模型的方法。请同时参阅 6.1.19 章节《元件、物体重 用和独特功能》一节。同时请确保工程管理窗口中元件未被隐藏。

"物体"与"元件"

示了已创建的球体。

首先,通过一个最简单的例子来理解"元件"概念。打开"sphere.ewp"文件,界面上显示了已创建的球体。

展开工程管理窗口中的节点,并双击物体一栏下的 "sphere"。可以看到该球体是按照 "球体" 类型进行创建的。

工程管理窗口 ×		修改物体
项目	¥	
🗉 🚞 sphere		物体名: sphere
🗉 👒 RCS(单站角,电大体系)	V	
🗆 🖏 模型	V	◎ 新建物体: ◎ 已有元件
🗉 💋 材料		
🗆 📦 元件		类型: 球体 🗸
📦 type3		
📦 type1		
🗊 type2		X: 0.0 Y: 0.0 Z: 0.0 空心率: 0.0
🗆 📦 物体		宽度:
📦 sphere	V	X: R*2 Y: R*2 Z: R*2
♪ 细导线	V	
🗉 幕 激励源		材料: ● pec
🗉 🦻 记录器	V	
а 结果		

在 EastWave 软件的基础教程中,创建物体时我们学习了设置物体名称、类型、相关参数、 材料的方法,但是,如何理解这个选项呢?

š		
不妨选择'	"已有元件",显示下面的界面。	
修改物体		×
物体名:	sphere	
	◎ 新建物体 (◎) 已有元件	
元件:	type1	•
材料:	ec 🗸	坐标变换 >>
	帮助 预览 重置	修改 取消

这个界面中,并没有物体类型等参数,而仅仅显示了"元件"、"材料"。

那么什么是元件呢?按照提示,我们查看工程管理窗口,恰好发现元件一栏下有同样名称 的元件 "type1"。

工程管理窗口	
项目	₩
🗉 🥃 sphere	1
ਭ 🙀 RCS(单站角,电大体系)	1
🗆 🗟 模型	1
🗄 💋 材料	
🗆 📦 元件	
📦 type3	
📦 type1	
📦 type2	

双击打开 type1。可以看到该对话框正好是与物体窗中的对应的。

◎ 新建物体 ◎ 已有元件

元件 - 球体	
	元件名: <mark>type1</mark>
	元件类型: ↓ 球体 🔻
中心位置: X	: 0.0 … Y: 0.0 … Z: 0.0 … 空心率: 0.0 …
宽度 : X	: R*2 Y : R*2 Z : R*2
	帮助 预览 重置 修改 取消

由此我们可以认为:

- 物体 = 元件 + { 坐标变换 + 材料信息 }
- 元件只有几何尺寸、相对位置信息
- 物体则根据元件和坐标变换,确定具体位置

在本例中,虽然创建了3个元件,但只有1个物体,该物体只关联了1个元件,因此 CAD 视口中只显示了1个球。

引用的逻辑:"重用"与"独特"

采用"元件"来定义物体的好处是,可以对元件进行重用,具体理解如下:

- 一个元件可以被多个物体引用。修改一个元件时,所有的物体都会修改。
- 多个物体共用一个元件时可以拥有各自不同的坐标变换、材料信息

例如,新创建一个球体,将该球体关联到"type1"元件,并移动球以使其和之前的球体不重合。

就可以看到两个物体都被修改为了立方体。

这个功能在很多地方都很好用,如,创建天线阵列或光子晶体阵列时,如要修改单个天线 或单个元胞,可以只修改其最基本结构对应的元件,就可以发现整个阵列都被修改完毕。 由于该例的操作还要先理解引用逻辑,因此在下一节进行说明。

在本节最后,我们再理解另外两个小概念"复制"和"独特"。 撤销到 sphere.ewp 文件的最初状态(也可以重新打开该文件)。

修改物体					/		۲.
物体名: spl	nere_0						
O	新建物体 💿 已有元件	ŧ					
元件: [type	÷1						•
材料:	bec	•			坐	标变换<<	
类型	x	γ	Z	旋转	父节点:	global	-
移动(局部坐标	系) 0.0	0.0	0.0	N.A	列:	0	
移动(全局坐标	系) 0.0	0.0	R*4	N.A	行:	0	
					层:	0	
•				•			
	帮助	预览	重置	修i	次 [取消	

ì

	•					
		帮助	一一一一一预	きし 重置	修改	
L						
2	这说明了,又	, 时物体进行复制时,	,并没有复制元	元件,只是重新	设置了物体的	9位置。
,	누+ㅋㅍㅋィヽゕっ		入计学	心体带住一步	× 4刀 × 1 平	

这提醒我们,如果只想对其中一个进行变换,必须要使二者解关联。

即"独特"操作。

重复复制过程,在复制完成后,同样在右键菜单中,选择"独特"。

修改物体

关联到了这个新元件。

type1_0

📦 type3

📦 type1

🗊 type2

🗊 sphere_0

🇊 sphere

□ 📦 元件

🗆 🧊 物体

物体名: sphere_0

元件: type1_0

材料: ●pec

类型

移动(局部坐标系)

移动(全局坐标系)

◎ 新建物体 (④) 已有元件

х

0.0

0.0

•

Ζ

0.0

R*4

[预览] 重置

Y

0.0

0.0

观察元件库的变化,此时新产生了个元件 "object 0"。同时查看这个物体,可以看到它被

• 帮助 这样就完成元件的解"关联"了。

"关联"概念更专业的术语应该叫做"引用"。学过c语言的朋友应该对"引用"的概念 不陌生。"引用",即借用他者来构造自身。在 EastWave 软件中,物体是引用元件库中的 某个元件来构成自身的。

据此,我们可以对物体和元件进行解引用或重引用操作。在只修改元件、不创建或删除物 体的情况下,使仿真的模型完全不同。

×

Ŧ

坐标变换<< 旋转 父节点: global

列:0

行:0

层: 0

修改 取消

N.A

N.A

Þ.

同样,重新打开"sphere.ewp"文件,打开球体"sphere",选择"已有元件"。

修改物体	
物体名:	sphere
	◎ 新建物体 (◎ 已有元件)
元件:	type3
	type2 type1
	type3

可以已选择"type1"、"type2"、"type3",按照不同的构造方法来创建球体。

我们同样将在下一节为大家展示更实用的例子。

层叠结构

常仿真光子晶体、天线阵的用户可能早已注意到,在生成"组"或创建"周期阵列"时,物体一栏下会产生层叠结构。

如偶极子天线模型 "Dipole_antenna_array.ewp" 文件。

可以看到整个结构由基底盘"Ground"、3*5 的阵列天线"Antenna_Array"组成。单个天 线又由 2 根直导线"Up""down"、1 根馈线"kuixian"、1 个网格控制组件"mesh"组成。

EastWave 5.0 辅助教程

修改物体	
物体名:	Antenna_Array
	◎ 新建物体 () 已有元件
元件:	Antenna_Array
材料:	 ●继承自父节点 ◆
	帮助 预览 重置 修改 取消

继续,我们打开"Antenna_Array"元件,发现该元件的属性为"周期阵列"。

🖻 📦 元件		
🗉 盲 All_Structure		
🗊 Ground		
🗉 📁 Antenna_Array		
元件 - 周期阵列		×
	元件名: Anten	na_Array
	元件类型: 周期阵	₽歹川 ▼
中心州立査:		al:
X : 0.0 Y :	0.0 Z : 0.0	X: 15 Y: 0 Z: 0
		a2 :
		X: 0 Y: 15 Z: 0
		a3 :
		X: 0 Y: 0 Z: 0
		音等 修改 取当
<u>нт</u>		

这说明了,物体的层叠结构中,每一层都对应一个元件。该元件可以在元件库中找到。 □ ■ 元件

All_Structure
 Ground
 Antenna_Array
 kuxian
 mesh
 Antenna

Anteni

🇊 dip

那么,这样做的好处是什么呢?

如果需要修改单个天线,那么修改组成天线的元件"Antenna"完毕后,整个阵列的天线 都将被改变。

如果元件库中有完整模型的层次结构,那么你可以通过修改物体关联的元件,来控制显示。 例如: 只显示天线阵列,可以选择元件为"Antenna_Array"。 х 修改物体 物体名: All_Structure ◎ 新建物体 (◎) 已有元件 元件: Antenna_Array Ŧ 材料: ●pec 坐标变换≻≻ • 帮助 预览 重置 修改 取消 х Ę у 只显示单个天线,可以选择元件为"Antenna"。 х 修改物体 物体名: All_Structure ◎ 新建物体 (◎)已有元件 元件:Antenna Ŧ 材料: ●pec 坐标变换>> Ŧ 帮助 预览 重置 修改 取消 x ¢ y

更多的功能还留给你发现。 附件 <<元件.zip>>